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Abstract
We show there exists a mathematically consistent framework within which
the renormalization programme can be understood in a natural manner. The
framework does not require any violations of mathematical rigour usually
associated with the renormalization programme. We use the framework of
the non-local field theories (these carry a finite mass scale �) and set up a
finite perturbative programme. We show how this programme leads to the
perturbation series of the usual renormalization programme (except for one
difference) if the series is restructured. We also show that the comparison
becomes possible if there exists a finite mass scale �, with certain properties,
in the quantum field theory (which we take to be the scale present in the non-
local theory). We give a way to estimate the scale�. We also show that the finite
perturbation programme differs from the usual renormalization programme by
a term, which we propose can also be used to set a bound on �.

PACS numbers: 1110, 1220, 1238

1. Introduction

The presently successful theory of strong, electromagnetic and weak interactions, namely
the standard model (SM) is a local quantum field theory (LQFT) [1]. A large body of
the successful comparison between the standard model and the experiments is based upon
perturbative calculations. Local quantum field theory calculations, when done perturbatively,
are generally plagued with divergences and this certainly holds for the SM calculations [2]. The
initial successes of the first LQFT, namely quantum electrodynamics (QED) were based upon
the renormalization programme initiated by Feynman, Schwinger, Tomonaga and developed
to a general form by Dyson [3]. This programme gives an elaborate procedure for dealing with
divergences in LQFT. When this procedure is followed order by order in perturbation theory,
it was demonstrated that all the divergences in the theory could be absorbed in the definitions
of renormalized fields and parameters as related to the unrenormalized ones. These relations
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were obtained by imposing by hand ‘renormalization prescriptions’ on the 1PI (proper) vertices
which amounted to giving by hand (i.e. from experiment) the physical masses and couplings
(and other unphysical parameters). Then the renormalized S-matrix was indeed finite in
terms of these. This procedure was highly successful for QED and more so for the further
development of standard model [2]. It also yielded many results based on renormalization
group equations and the Callan–Symanzik equation [4].

The renormalization procedure, despite several initial misgivings, came to be regarded as
an essential established part of LQFT primarily due to the successes of renormalized LQFT in
particle physics. However, as any textbook discussion shows, the treatment of divergences in
perturbation theory is highly suspicious from the point of view of mathematical rigour (see,
e.g., [2]).

The definition of the infinite Feynman integrals involved requires a regularization. A
regularization such as that of Pauli–Villars violates unitarity for any finite cut off1, which
is recovered only as � → ∞. Furthermore, in a calculation to any finite order of
perturbation theory one makes mathematically unjustified truncations. Thus, in a Pauli–Villars
regularization, if

Z = 1 + ag2 ln�2 + O(g4)

Z−1 is expanded as

Z−1 = 1 − ag2 ln�2 + [ag2 ln�2]2 + · · ·
and is truncated to

Z−1 = 1 − ag2 ln�2 + O(g4).

Both of which are mathematically invalid operations even for finite (but large enough)
�. Similar truncations are made in any regularization. Thus one does not have, in the
conventional renormalization procedure of LQFT, unitarity and mathematical consistency
for any finite (but large enough) �. Furthermore, the relation(s) such as 0 < Z < 1 for
the wavefunction renormalizations (wherever applicable) obtained from LSZ formulation
without recourse to a perturbation procedure [5] have to be ignored in these procedures as
Z turns out to diverge in perturbation theory [5]. Despite these mathematical shortcoming
the renormalization programme has succeeded exceedingly well. While it is commonly
argued that these may be pathologies introduced by the perturbation treatment which may
not matter in non-perturbative treatments, we should recall that much of the success of the
standard model is based on perturbative calculations done following the renormalization
programme.

Since the early days, one has felt that it may be possible to cure the procedure of these
shortcomings, but it has not been possible. However, now, non-local formulations of field
theories (NLQFT) are possible [6, 7] in which the theories have a finite scale � and are finite
(with � finite), unitary and causal for finite �. These allow us to reconsider the issue of
divergences in a new light. We find it convenient to use such a formulation as the background
for our line of reasoning. In such formulations, gauge (and other symmetries) can also be
preserved, in a generalized (non-local) form [7]. They also admit results of the renormalization
group at finite �. One can look upon these formulations in two possible ways: (a) as a
new non-local regularization scheme, an augmentation of the available regularization and
renormalization procedures or (b) as theories in which � having a fixed finite value serves
as the underlying (possibly effective) theory itself. This latter viewpoint has been proposed

1 See, for example, the discussion in [6, 7].
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in [6, 7] and has also been extended and followed up in [8]. In these theories, all calculations
are (strictly) finite and a (finite) renormalization procedure is needed only for the organization
of calculations to a given order. We wish to work in the context of such a theory with a finite
�. We have demonstrated [9] that in such formulations, relation 0 < Z < 1 can, in fact, be
implemented literally and non-trivial conclusions can be drawn from it, which would not be
possible in the usual formulation of the renormalization procedure.

We shall demonstrate in this work that we can maintain the mathematical consistency of
the formulation in the present approach. Our approach does, in fact, explain where and why the
usual renormalization procedure works and elaborate on where we expect the two treatments
(to a finite order of perturbation) would give rise to different numerical results. We shall show
that we can introduce a rigorous way of defining the perturbation theory which (with a finite
�) is a finite process. We shall further show (in section 2) that the usual perturbation series is
simply obtained by a restructuring of the series so obtained from the above rigorous approach.
We show that this depends on the existence of a finite scale � with certain properties. We
also point out a difference between the schemes and further argue that this difference can
(from available experimental data) be employed to obtain information about �. This is done
in section 3.

We outline the approach(es) we want to adopt. We suppose that the particle physics
theories are, in fact, described by a non-local action of the type proposed in [7] with a finite
parameter� present in it (for a brief review of this viewpoint see [8,9]). The presence of such
a parameter can be looked upon in two ways [8, 9], and we discuss our results in the context
of both. In the first approach we may regard 1/� as the scale of non-locality arising possibly
from a fundamental length scale already existing in nature. In this approach, the NLQFT is an
exact theory valid to all energies. In the second approach, which is probably more plausible,
the non-local theory is looked upon as an effective field theory valid up to a certain energy
scale (dependent on�) and beyond this scale, the theory would have to be replaced by another
NLQFT of a more fundamental nature.

2. An understanding of the renormalization programme in a rigorous framework

Many of the calculations done in the context of the standard model that are compared with
experiments are done perturbatively. In perturbative treatments, one evaluates a physical
quantity to a given order n in the coupling constant, say λ. One carries out renormalizations
to this order leaving out any higher-order terms both in finite parts as well as divergences.
In doing so, one is actually ignoring terms, which are a priori much larger (in fact, infinite!)
compared with the terms kept. We do not generally have a mathematically sound justification
for such a procedure. One then compares this result with the experimental result. In
doing so, one has the possibility of choosing a variety of (a) regularization schemes and (b)
renormalization conditions/schemes. It is understood that while the results obtained within a
given regularization, but using different renormalization conditions may differ in the definitions
of its renormalized parameters in terms of its bare parameters, the results are supposed to
ultimately agree when summed to all orders2. When, however, the series for a physical
quantity P(λ) is truncated to O(λn) as is necessary in a practical calculation, the differences
(which are supposed to be finite and small) are supposed to arise from higher-order finite terms
only. Such differences have to be ignored and lead to scheme dependence. We normally find a
good agreement with experiment in innumerable cases and we do not consider the intermediate
violations of mathematical rigour important.

2 Of course, whether the perturbation series will converge is questionable: see [11] and section 3.



2768 S D Joglekar

In this work, we shall show that we can adopt a mathematically rigorous approach to
perturbation theory that enables us to understand why and indeed how this procedure works.
This approach is more natural, mathematically sound and less mysterious that the conventional
exposition (which at least a new student finds baffling until he learns to accept it!). The approach
suggested does not require large (or, in fact, infinite) terms to be ignored. We wish to further
suggest that the very fact that the usual procedure works and leads to results agreeable with
experiments has in it information available, ignored otherwise. In fact, the point of view
adopted here allows one to deduce the existence of a natural scale in a QFT.

Just to illustrate the violation of mathematical rigour in the renormalization process
consider a renormalization constant evaluated to O[λ]:

Z = 1 + Aλ ln�2/m2. (2.1)

Suppose we need the inverse Z−1, we normally expand

= 1 − Aλ ln
�2

m2
+

(
Aλ ln

�2

m2

)2

+ · · · (2.2)

and keep only the terms of the O[λ] in the series:

Z−1 = 1 − Aλ ln�2/m2 (2.3)

to this order of the perturbation series. Such a procedure is normally applied in each order
of the perturbation series at various stages of calculation. There are two major violations of
mathematical rigour.

(a) Despite the fact that Aλ ln�2/m2 is (for large enough �) larger than 1 the expansion of
the form (2.2) is carried out.

(b) Irrespective of the above, the terms in (2.2): [Aλ ln�2/m2]2 + · · · which may be
comparable to (or much larger than) those kept (even though formally of higher order) are
ignored.

No justification of the above steps in the renormalization programme has been given except
that the renormalization programme so formulated leads to many experimentally verifiable
results.

Our aim in this work is to show that the problems posed by the violation of mathematical
rigour are avoidable provided that:

(a) a finite scale � exists with certain properties to be described later;
(b) the usual perturbation series is understood as a rearrangement of what we would naturally

mean by perturbation series which (with a finite�) would be an entirely finite process and
allows a natural formulation (modulo usual ambiguities associated with renormalization
conventions).

To formulate this viewpoint, it is, in fact, convenient to do so within the setting of
NLQFTs3. To be precise we shall adopt the interpretation of NLQFTs given in the introduction
where we regard the scale � as a finite scale present in the theory either on account of (a) a
natural spacetime parameter 1/� or (b) a scale � characteristic of the range of validity of the
theory.

In this viewpoint regarding renormalization, we regard � as finite and expect the finite
renormalizations be carried out rigorously. We do not need to perform mathematical operations
that are not rigorous.

3 A brief review of NLQFTs may be found in section 2 of [8] or in [9].



Understanding the renormalization programme in a mathematically rigorous framework 2769

We define our procedure for the nth-order perturbation theory which is, in fact, what one
would do in any finite perturbation scheme and point out the essential differences with the
conventional approach. We shall formulate our scheme with reference to QED.

(a) We evaluate a given proper vertex �(2f,p) up to an n-loop approximation. We do
calculations directly in terms of the Lagrangian expressed in terms of the unrenormalized
parameters. Our results for� are also expressed in terms of the unrenormalized parameters.
For the self-energies and the electron–photon vertex, we determine Z1, Z2,Z3 and δm by
requiring that Zf2 Z

p/2
3 �(2f,p) satisfies the renormalization conditions up to nth order. We

then know that Zf2 Z
p/2
3 �(2f,p) gives the correct numerical value of renormalized proper

vertex, expressed, however, in terms of unrenormalized quantities. (This is most easily
seen with the help of the generating functionals for proper vertices—both unrenormalized
and renormalized.)

(b) The renormalization conditions give us relations between bare and renormalized quantities.
These equations are solved without regarding α ln�2/m2 as a small quantity, for example,
we do not follow the usual steps such as those outlined between (2.1)–(2.3).

(c) We then express Zf2 Z
p/2
3 �(2f,p) in terms of the renormalized parameters. Usual

renormalization theory tells us that if Zf2 Z
p/2
3 �(2f,p) is expanded by (using a procedure

that involves the usage of approximations such as those between (2.1)–(2.3)) up to an
order e2( 1

2E−1+n) (with E ≡ 2f + p) and with the higher-order terms neglected, it will
have a finite limit as �→ ∞. We, however, required in the present formulation that we
do not ignore O

(
αE/2+n

(
ln�2/m2

)p)
terms and higher as these may be substantial. (The

example below will illustrate the differences.)
(d) This procedure may be followed to any desired degree of finite order n.

We make several remarks.

1. There is no ambiguity on what we mean by the nth-order perturbation result (modulo
the renormalization convention ambiguities).

2. There is no mathematically unjustifiable procedure used or required.
3. The results up to nth-order perturbation theory for this procedure and the standard

procedure may differ by terms involving powers of α ln�2/m2 which may be
numerically significant.

4. We shall, however, show that a procedure exists for dealing with the perturbation
series that correspond to a restructuring of terms in the perturbation theory as defined
above, and moreover it is, in fact, a numerically more accurate way of evaluating
the approximation to the quantity under consideration. This procedure gives results
which, in fact, nearly (see point 6 below) correspond to those of the usual interpretation
of perturbation theory. Thus the usual renormalization procedure is then understood
as a restructuring of the terms in the perturbation series arising from the above rigorous
formulation of perturbation theory.

5. The usual perturbation theory is understood in the above manner provided the theory
contains an intrinsic finite mass scale � such that the above expansions in terms
of the coupling constant are possible rigorously. (Please see the discussion in the
next section.) We emphasize that in our approach, the n-loop perturbation result for
the S-matrix is defined irrespective of whether we can carry out the expansion just
mentioned. It is only when we want to compare it with the usual perturbation theory
rigorously that the need for expansion arises. (In theories with infrared divergences,
we may need to go to infrared divergence-free quantities while comparing the
two programmes of perturbation. This problem is not present, however, in other
renormalizable field theories.)
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6. There is still, however, a disagreement left with the usual perturbation theory.
This disagreement, though it may be small, may yet provide (further) information
concerning the possible intrinsic mass scale present in the theory when compared
with experiments. (Please see the discussion in the next section.) This is in addition
to the information available from 0 < Z < 1 (see [9]) in QFTs that may be deduced
where this is possible.

7. With this interpretation in point 5, the information obtained about the scale � may
be compatible with that obtained from 0 < Z < 1 [9].

It is best to illustrate this point of view with the help of a simple example. Consider QED.
We consider the evaluation of a one-loop correction to e. Let e0 be the bare coupling.

For �µ we shall find

�µ(p, p
′;�) = γµ

{
e0 + e3

0

[
A ln�2/m2 + B

]}
+ e3

0fµ(p, p
′;�) (2.4)

where we assume that fµ(p, p′;�) = 0 for p = p′ and electrons on mass shell and, moreover,
is finite if we were to let�→ ∞. We normally define renormalized coupling by the convention
(e is the observed electric charge)

Z2Z
1/2
3 �µ ≡ �rµ(p, p′;�) = eγµ at p − p′ = 0 with p2 = p′2 = m2 (2.5)

(though this is not the only one, we shall stick to it in connection with this example). We then
find (we recall that Z−1

1 = Z−1
2 and there, together with Z−1

3 , have a general form (1 + C ′e2
0)

with c′ ∼ ln�2)

e = e0
[
1 + C ′e2

0

]−1/2 ≡ e0
[

1 − 2Cα

(
e0

e

)2]−1/2

. (2.6)

The above is a finite relation chosen so that the certain physical quantities (here the electric
charge) agree with the one-loop result exactly. We have as a solution

e0 = e(1 + 2Cα)−1/2. (2.7)

We normally truncate this solution as

e0 = e[1 − αC + O
(
α2C2

)]
(2.8)

with the clear assumption that O
(
α2C2

)
terms can be ignored. Now suppose, we insist on the

evaluating the one-loop result by keeping the entire solution (2.7), then we obtain (henceforth,
by � we shall refer to the renormalized quantity)

�µ(p, p
′;�) = γµe + e3(1 + 2Cα)−3/2fµ(p, p

′;�)Z2Z
1/2
3 . (2.9)

The usual procedure is to truncate �µ to

�µ(p, p
′) = γµe + e3 lim fµ(p, p

′;�). (2.10)

(Here, lim refers to � → ∞.) We note that (2.9) and (2.10) differ by terms of the order of
eα2C which diverge as�→ ∞ or could well be larger than the terms kept in the usual result
(2.10). In addition, (2.9) and (2.10) point to a different dependence on external momenta and
hence have observable effects, which could well be large.

How, then, do we get away with the usual perturbative answer of (2.10)? We explain it in
the following manner. The one-loop answer (2.9) can also be expanded if 4αC < 1 (which
we assume to be valid: see point 5 above), then (2.9) reads

�µ(p, p
′;�) = γµe + e

[
αA1µ(p, p

′;m,�) + α2B1µ[p, p′;α,m,�]
]

(2.11)
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where A1 has a finite limit were �→ ∞ and B1 is a possibly divergent function as �→ ∞.
Now, imagine working out the result for �µ(p, p′) to the next order according to the

procedure outlined before. From renormalization theory we already know that the result for
�µ(p, p

′) to this order reads

e−1�µ(p, p
′;�) = γµ + αA1µ(p, p

′;m,�) +
[
α2A2µ(p, p

′,m,�)

+α3B2µ[p, p′;α,m,�]
]
. (2.12)

The term B2µ could well be divergent (or large if � is large but finite), yet they are normally
neglected. Thus, it is an essential consequence of the results on renormalization [10] that the
application of the perturbation procedure to a further order (second) leads to a contribution to
e−1�µ(p, p

′;�) of the form

−α2B1µ[p, p′;α,m;�] +
[
α2A2µ(p, p

′,m;�) + α3B2µ[p, p′;α,m,�]
]

(2.13)

with the first term simply cancelling the divergent (dominant) term in (2.11). Here, A2µ has
a finite limit as � → ∞ and B2µ may diverge as � → ∞. We note that in (2.13) are
contributions that came from the two-loop diagrams as well as the terms arising from the
lower-order terms from further redefinitions of parameters and the fields.

In a similar manner the next-order term cancels the order α3 divergent part of
α3B2µ[p, p′;α,m,�], and so on.

We thus see the perturbative expansion procedure, that we outlined, rigorously followed
to N -loop order, leads to an expansion for e−1�µ(p, p

′,�) which reads

e−1�µ(p, p
′;�) = γµ +

N∑
1

{−αnBn−1µ(p, p
′;α,m,�)

+
[
αnAnµ(p, p

′,m;�) + αn+1Bnµ[p, p′;α,m,�]
]}

(2.14)

with B0 = 0. We note that the above is only possible if a finite scale � that allows the series
expansions to exist. If we, now, reorder the terms in the series so that the Bn terms from the
successive terms are grouped together (which then cancel) we would obtain

e−1�µ(p, p
′;�) = γµ +

N∑
1

αnAnµ(p, p
′;m,�) + αN+1BN+1µ[p, p′;α,m,�]. (2.15)

We now see that the usual perturbative expansion up to N th order

e−1�µ(p, p
′;�) = γµ +

N∑
1

αn limAnµ(p, p
′;m,�)

is simply a rearrangement of (2.14), except for the BN+1 term and for the limit �→ ∞ taken
in An.

Evidently, for finite�, even though the αn+1Bnµ[p, p′;α,m,�] term could be significant
or even dominant as far as the nth-order perturbation theory is concerned, they cancel out
when an opposite contribution from the next order is taken into account! Thus, the series
obtained via the interpretation of the perturbation series outlined earlier, though rigorous, leads
to a less convergent series from large oscillating terms, while the usual interpretation of the
renormalization procedure is simply a reorganization of the same series that converges rapidly
and therefore leads to a more accurate numerical estimate of the quantity under consideration.
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3. Bounds for Λ: examples of QED and QCD

We have seen that the agreement between the usual perturbation theory and the rigorous
approach suggested in section 2 depends on the possibility of expansion of the products of
renormalization constants and their inverses in powers of the coupling constant which makes
the comparison possible in the first place. For example, we can invert some renormalization
constant of the form

Z = 1 + Aλ ln�2/m2 (3.1)

(which, for example, would be needed in evaluation of the four-point S-matrix amplitude to
two-loop order) we would need∣∣Aλ ln�2/m2

∣∣ < 1. (3.2)

This implies immediately a bound on how large � can be. (We have investigated a similar
criterion in [9] from a different angle.) While we have not investigated such constraints to
higher orders for various renormalization constants, we expect a similar bound coming from
higher-order renormalization constants.

From (3.2) we know that we obtain a bound of the ‘form’ [9]

λ

16π2
ln
�2

max

m2
< 1. (3.3)

This yields (without worrying about exact coefficients in (3.2))

�max = m exp
{
8π2/λ

}
. (3.4)

For m = 1 GeV and λ/16π2 = 0.05 [0.01] we obtain

�max = 22 TeV [1018 TeV]. (3.5)

Of course, the actual numbers are sensitive to the coefficient in (3.2) and to the value of
λ in a given theory; however, we may expect a bound that is testable in the near future.

Another possible bound comes from the difference between the usual perturbation theory
and the finite scheme proposed in this paper4. To N th order of the perturbation series, it is of
the form of the last term in (2.15) (there written in the context of the three-point proper vertex).
Now the value of this term depends on N . We shall now suggest a way to understand what
value for N we should choose.

We know from the number of works that the perturbation series is not a convergent series
for any value of the coupling in QFTs [11]. Suppose we assume that the perturbation series
is an asymptotic series [11]. For a certain value of coupling constant, then there is an optimal
number of terms that needs to be kept in the series that gives the best approximation to the
physical quantity under consideration (and this is all that we require for the present discussion).
In a given context, let this number beN . Then we shall always compare the usual perturbation
series with the result obtained via the procedure adopted here evaluated to N th order. Thus,
we shall assume that the quantity under consideration is given actually by a series of the form

e−1�µ(p, p
′;�) = γµ +

N∑
1

αnAnµ(p, p
′,m;�) + αN+1BN+1µ[p, p′;α,m,�]. (3.6)

4 We note that our perturbation expansion is defined for all gauge parameters; comparison with the standard
perturbation series may be possible only for a subset of gauge parameters whenever gauge-dependent renormalization
constants are involved. Nevertheless, for direct comparison of a gauge-independent quantity in both schemes, this
question will not arise.
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The actual calculation should be compared with the above series: calculation of higher-
order terms only diminishes the accuracy [12] for an asymptotic series. Thus, when a
calculation to orderM < N is made in a conventional way, the following result is obtained

e−1�µ(p, p
′) = γµ +

M∑
1

αn lim[Anµ(p, p
′;m;�)] (3.7)

where lim refers to limit �→ ∞.
The difference between the two series (3.6) and (3.7) arises from the following sources:

(a) the last term αN+1BN+1µ[p, p′;α,m,�]];
(b) the perturbation terms of orders (M + 1), . . . , N ;
(c) the differences between lim[Anµ(p, p′;m,�)] and [Anµ(p, p′;m;�)] for 0 < n < M+1.

While the relative magnitudes of these three terms are dependent on M,N and �/m, we do
note the following. The difference (c) above tends to zero as�→ ∞, it is likely to be generally
ignorable. The term (b) above is owing to the usual higher-order perturbation contributions.
The last contribution (a) is likely to behave as αN+1{ln[�2/m2]}N+1. In the case where the
last contribution is the dominant one, we can suggest a way of obtaining the bound on� from
experimental data.

In this section, we shall illustrate the point by performing some numerical estimates
for �max in the context of two different examples. Here the purpose is not so much to
obtain accurate numbers, as to explain the principles involved behind these calculations. We
leave accurate evaluations of these quantities using hard experimental data to another detailed
work [13].

We shall consider (a) QED (only) and (b) QCD successively. Again, the stress in either
examples is on illustration of how a limits can be obtained rather than on exact experimental
numbers.

3.1. QED

Suppose, for the sake of illustration, that the entire contribution to (g − 2) of the muon came
entirely from QED. Calculations have been done up to O(α4) calculations. We recall [14] the
theoretical and experimental results:

aQED = 11 658 480(3)× 10−10

aexpt = 11 659 230(84)× 10−10.

The typical experimental error is of the order of 10−8. The result for aQED is obtained by
following the usual renormalization procedure up to four loops. The modifications suggested
in section 3 say that an uncertainty of

O

[(
α

4π

)N+1 (
ln
�2

m2

)N]

may be present in these results as such terms may not be ignored in fact. Now, we assume
that the experimental results agree with the results obtained from the usual perturbation theory.
Then we can assume that the extra term

O

[(
α

4π

)N+1 (
ln
�2

m2

)N]
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is bounded by the experimental error. Furthermore, we assume that for an asymptotic series
with expansion parameter α

4π ln �
2

m2 needs N + 1 = 5 terms5 for optimal approximation. Then
(without working about the overall constants), we can write a bound of the form (A = a
numerical coefficient which is not evaluated6).

A
α

4π

(
α

4π
ln
�2

m2

)4

� 10−8.

The result is sensitive to the value of A, which we have not determined. As an example, we
have (with m = Mµ) and A = 200, �max ≈ 100 TeV.

Of course, the entire procedure is sketchy and this does not make this number very reliable,
but the fact that the number exists and can be found becomes amply evident (see [13] for a
detailed treatment).

Furthermore, in view of the fact that the expansion parameter in the renormalization
constants

α

4π
ln
�2

m2
� 1

the mathematical operations we have used are indeed justifiable.

3.2. QCD

Suppose we evaluate a quantity X in QCD to O(α2
s ) at energies of O(Mz) Let us suppose that

a quantity is calculated asX = A(αs/4π)2. Now α(Mz) is uncertain to within ±0.02, i.e. [15]

α(Mz) = 0.119 + 0.02.

Suppose we assume that the usual perturbation results for the quantity agree with the
experiment within error bars. Then we know that the last term in (3.6) must be bounded by
the experimental uncertainty (which we take as arising from the uncertainty in αs to illustrate
the point), namely

2A

(4π)2
αs($αs)expt.

We next assume that the modification in the renormalization procedure in section 2 introduces
additional terms which are of

O

[(
αs

4π

)N+1 (
ln
�2

m2

)N]
.

Suppose we now assume that these are within error bars of the experimental results, then we
will have an equation of the form

B

(
αs

4π

)N+1 (
ln
�2

m2

)N
� 2Aαs ($αs)expt [4π ]−2.

(B and A are unknown, but calculable constants. The details of the actual relation will
depend too much on the actual experimental errors and the details of the perturbative calculation

5 The number of terms here may seem unrealistic. We emphasize that we are trying to find an upper bound �max on
the scale�. What we are assuming is that the optimal number of terms is N + 1 = 5 when� = �max. For the actual
value for the scale � that may exist in the theory, the number N of optimal number of terms may, in fact, be larger.
6 Here we have ignored a contribution of the type (c) enumerated below (3.7) in comparison to the contribution of
the type (a). This is borne out by the calculations of [8].



Understanding the renormalization programme in a mathematically rigorous framework 2775

which are beyond the scope of this paper.) Numerical estimates can only be done if we knew
the details such as the actual experimental uncertainty in a given process, the value of N and
constants such as A and B. For m ∼ 1 GeV; we give some representative numbers (see
footnote 5):

B

A
= 5 N = 4 �max ∼ 100 TeV

B

A
= 2 N = 3 �max ∼ 10 TeV.

Again, we reiterate the remarks that were made for the QED calculation; namely, while
we have made simplistic assumptions for the purposes of illustration, such bounds exist and
can be obtained is amply illustrated.
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